

INSTITUTE FOR MATHEMATICAL RESEARCH

Universiti Putra Malaysia Mathematical Olympiad 2016 UPMO 2016

Name :

Matric No. :

Faculty :

Date : 3 April 2016

Time : 9:00 am - 12:00 noon **Duration** : 3 hours

Instruction to Candidate

- 1. Answer all questions.
- 2. Answer all questions on the answer sheets.

1. Let $z = \sqrt{y} + f(\sqrt{x} - 1)$. Determine the functions f(x) and z if z = x at y = 1.

Solution: Substituting y = 1 in the equation $z = \sqrt{y} + f(\sqrt{x} - 1)$ we find $x = 1 + f(\sqrt{x} - 1)$. Let us denote $\sqrt{x} - 1$ by u. Then $x = (1+u)^2$. Therefore from $x = 1 + f(\sqrt{x} - 1)$ we have,

$$(1+u)^2 = 1 + f(u),$$

 $f(u) = (1+u)^2$
 $= 1 + 2u + u^2 - 1$
 $= u^2 + 2u$

Then substituting the value of the function f(u) in the original equation

$$z = \sqrt{y} + f(\sqrt{x} - 1)$$

we obtain

$$z = \sqrt{y} + f(\sqrt{x} - 1)$$

= $\sqrt{y} + (\sqrt{x} - 1)^2 + 2(\sqrt{x} - 1)$
= $\sqrt{y} + x - 2\sqrt{x} + 1 + 2\sqrt{x} - 2$
= $\sqrt{y} + x - 1$

Therefore the final answer is $f(x) = x^2 + 2x$ and $z = \sqrt{y} + x - 1$.

Remark: Note that in the final answer $z = \sqrt{y} + x - 1$ the domain of z looks like the set $\{(x, y) \in \mathbb{R}^2 | y \ge 0\}$, but this is not the ease since the original equation involves the expression \sqrt{x} . Therefore, the domain of z is

$$D = \{ (x, y) \in \mathbb{R}^2 | x \ge 0, y \ge 0 \}.$$

2. Find the minimum value of $f(x, y, z) = x^2 + y^2 + \frac{z^2}{2}$, given that x + y + z = 10.

Solution:

$$10 = x + y + z$$

= (1)x + (1)y + $\frac{z}{\sqrt{2}}(\sqrt{2})$
 $\leq \left(x^2 + y^2 + \frac{z^2}{2}\right)(1^2 + 1^2 + 2)$
 $\leq 4\left(x^2 + y^2 + \frac{z^2}{2}\right)$
 $\frac{10}{4} \leq \left(x^2 + y^2 + \frac{z^2}{2}\right)$
 $\frac{5}{2} \leq \left(x^2 + y^2 + \frac{z^2}{2}\right)$
 $\therefore \left(x^2 + y^2 + \frac{z^2}{2}\right) \geq \frac{5}{2}$

but $f(1,1,1) = \frac{5}{2}$; Therefore, $\frac{5}{2}$ is the minimum value. Now, we investigate the function to maximum.Let x = n - 10, y = -n, z = 0 which satisfies the equation x + y + z = 10, where n is positive integer. Where as,

$$f(n-10, -n, 0) = (n-10)^2 + n^2 \longrightarrow \infty$$

as $n \to \infty$. Hence, maximum value of f(x, y, z) do not exist.

3. Find

$$\lim_{n \to \infty} \frac{1 + 2^2 + 3^3 + \dots + n^n}{n^n}.$$

Solution:

Since

$$1 \leqslant \frac{1+2^{2}+3^{3}+\dots+n^{n}}{n^{n}}$$

$$\leqslant \frac{n+n^{2}+n^{3}+\dots+n^{n}}{n^{n}}$$

$$= \frac{n^{n+1}-n}{(n-1)n^{n}}$$

$$= \frac{n^{n}-1}{n^{n}} \cdot \frac{n}{n-1}$$

$$< \frac{n}{n-1} \to 1.$$

Hence,

$$\lim_{n \to \infty} \frac{1 + 2^2 + 3^3 + \dots + n^n}{n^n} = 1.$$

4. Let

$$F_n = \int_0^\infty x^n e^{-x^3} dx.$$

Show that $F_n = \frac{n-2}{3}F_{n-3}$ for $n \ge 3$.

Solution:

Let
$$u = x^{n-2}, du = (n-2)x^{n-3}$$

 $dv = x^2 e^{-x^3} dx, v = -\frac{e^{-x}}{3}$

$$F_{n} = \int_{0}^{\infty} x^{n} e^{-x^{3}} dx$$

= $\int_{0}^{\infty} x^{n-2} x^{2} e^{-x^{3}} dx$
= $\left[-\frac{x^{n-2} e^{-x^{3}}}{3} \right]_{0}^{\infty} + \int_{0}^{\infty} \frac{e^{-x^{3}}}{3} (n-2) x^{n-3} dx$
= $\left[-\frac{x^{n-2} e^{-x^{3}}}{3} \right]_{0}^{\infty} + \frac{n-2}{3} \int_{0}^{\infty} x^{n-3} e^{-x^{3}} dx$
= $-\left[\frac{x^{n-2} e^{-x^{3}}}{3} \right]_{0}^{\infty} + \frac{n-2}{3} F_{n-3}.$

The first term on RHS: As $x \to \infty$, $e^{-x^3} \to 0$ faster than $x^{n-2} \to \infty$. Therefore $\left[\frac{x^{n-2}e^{-x^3}}{3}\right]_0^\infty \to 0$ as $x \to \infty$. $\therefore F_n = \frac{n-2}{3}F_{n-3}$.

5. Calculate

$$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}^{2017}.$$

Solution:

$$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}^2 = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} ,$$

$$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}^4 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \cdot \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} .$$
Therefore,

$$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}^{2017} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}^{(4)(504)} \cdot \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} .$$

6. Find a polynomial with integer coefficients vanishing at $x = \sqrt{2} + \sqrt{3}$.

Solution:

Let us consider the polynomial $p(x) = x - (\sqrt{2} + \sqrt{3})$. The polynomial p(x) is not a polynomial with integer coefficients. Let us remove the irrationality from p(x). To do this we multiply p(x) by $q(x) = x^3 + (\sqrt{2} + \sqrt{3}) x^2 - (5 - 2\sqrt{6}) x - (\sqrt{2} - \sqrt{3})$. Indeed,

$$f(x) = p(x) \cdot q(x) = x^4 - 10x^2 + 1$$

has integer coefficients and

$$f(\sqrt{2} + \sqrt{3}) = (\sqrt{2} + \sqrt{3})^4 - 10(\sqrt{2} + \sqrt{3})^2 + 1$$

= 0

The construction of q(x) is as follows. Multiplying p(x) by $q_1(x) = x + (\sqrt{2} + \sqrt{3})$ we obtain

$$p(x) \cdot q_1(x) = x^2 - \left(\sqrt{2} + \sqrt{3}\right)^2 = (x^2 - 5) - 2\sqrt{6}$$

Then we multiply $p(x) \cdot q_1(x)$ by

$$q_2(x) = (x^2 - 5) + 2\sqrt{6}$$

to get

$$p(x)q_1(x)q_2(x) = (x^2 - 5)^2 - \left(2\sqrt{6}\right)^2$$
$$= x^4 - 10x^2 + 25 - 24$$
$$= x^4 - 10x^2 + 1$$

Therefore, $q(x) = q_1(x)q_2(x)$ is the required polynomial to remove the irrationality from p(x). The answer is $f(x) = x^4 - 10x^2 + 1$.