INSTITUTE FOR MATHEMATICAL RESEARCH

Universiti Putra Malaysia Mathematical Olympiad 2016
 UPMO 2016

```
Name :
Matric No. :
Faculty :
Date : 3 April 2016
Time : 9:00 am-12:00 noon Duration : 3 hours
```


Instruction to Candidate

1. Answer all questions.
2. Answer all questions on the answer sheets.
3. Let $z=\sqrt{y}+f(\sqrt{x}-1)$. Determine the functions $f(x)$ and z if $z=x$ at $y=1$.

Solution: Substituting $y=1$ in the equation $z=\sqrt{y}+f(\sqrt{x}-1)$ we find $x=1+f(\sqrt{x}-1)$. Let us denote $\sqrt{x}-1$ by u. Then $x=(1+u)^{2}$. Therefore from $x=1+f(\sqrt{x}-1)$ we have,

$$
\begin{aligned}
(1+u)^{2} & =1+f(u), \\
f(u) & =(1+u)^{2} \\
& =1+2 u+u^{2}-1 \\
& =u^{2}+2 u
\end{aligned}
$$

Then substituting the value of the function $f(u)$ in the original equation

$$
z=\sqrt{y}+f(\sqrt{x}-1)
$$

we obtain

$$
\begin{aligned}
z & =\sqrt{y}+f(\sqrt{x}-1) \\
& =\sqrt{y}+(\sqrt{x}-1)^{2}+2(\sqrt{x}-1) \\
& =\sqrt{y}+x-2 \sqrt{x}+1+2 \sqrt{x}-2 \\
& =\sqrt{y}+x-1
\end{aligned}
$$

Therefore the final answer is $f(x)=x^{2}+2 x$ and $z=\sqrt{y}+x-1$.
Remark: Note that in the final answer $z=\sqrt{y}+x-1$ the domain of z looks like the set $\left\{(x, y) \in \mathbb{R}^{2} \mid y \geqslant 0\right\}$, but this is not the ease since the original equation involves the expression \sqrt{x}. Therefore, the domain of z is

$$
D=\left\{(x, y) \in \mathbb{R}^{2} \mid x \geqslant 0, y \geqslant 0\right\} .
$$

2. Find the minimum value of $f(x, y, z)=x^{2}+y^{2}+\frac{z^{2}}{2}$, given that $x+y+z=$ 10.

Solution:

$$
\begin{aligned}
10 & =x+y+z \\
& =(1) x+(1) y+\frac{z}{\sqrt{2}}(\sqrt{2}) \\
& \leq\left(x^{2}+y^{2}+\frac{z^{2}}{2}\right)\left(1^{2}+1^{2}+2\right) \\
& \leq 4\left(x^{2}+y^{2}+\frac{z^{2}}{2}\right) \\
\frac{10}{4} & \leq\left(x^{2}+y^{2}+\frac{z^{2}}{2}\right) \\
\frac{5}{2} & \leq\left(x^{2}+y^{2}+\frac{z^{2}}{2}\right) \\
\therefore\left(x^{2}+y^{2}+\frac{z^{2}}{2}\right) & \geq \frac{5}{2}
\end{aligned}
$$

but $f(1,1,1)=\frac{5}{2}$; Therefore, $\frac{5}{2}$ is the minimum value.
Now, we investigate the function to maximum. Let $x=n-10, y=$ $-n, z=0$ which satisfies the equation $x+y+z=10$, where n is positive integer. Where as,

$$
f(n-10,-n, 0)=(n-10)^{2}+n^{2} \longrightarrow \infty
$$

as $n \longrightarrow \infty$. Hence, maximum value of $f(x, y, z)$ do not exist.
3. Find

$$
\lim _{n \rightarrow \infty} \frac{1+2^{2}+3^{3}+\cdots+n^{n}}{n^{n}}
$$

Solution:

Since

$$
\begin{aligned}
1 & \leqslant \frac{1+2^{2}+3^{3}+\cdots+n^{n}}{n^{n}} \\
& \leqslant \frac{n+n^{2}+n^{3}+\cdots+n^{n}}{n^{n}} \\
& =\frac{n^{n+1}-n}{(n-1) n^{n}} \\
& =\frac{n^{n}-1}{n^{n}} \cdot \frac{n}{n-1} \\
& <\frac{n}{n-1} \rightarrow 1
\end{aligned}
$$

Hence,

$$
\lim _{n \rightarrow \infty} \frac{1+2^{2}+3^{3}+\cdots+n^{n}}{n^{n}}=1
$$

Page 3
4. Let

$$
F_{n}=\int_{0}^{\infty} x^{n} e^{-x^{3}} d x
$$

Show that $F_{n}=\frac{n-2}{3} F_{n-3}$ for $n \geqslant 3$.

Solution:

Let $u=x^{n-2}, d u=(n-2) x^{n-3}$
$d v=x^{2} e^{-x^{3}} d x, v=-\frac{e^{-x}}{3}$

$$
\begin{aligned}
F_{n} & =\int_{0}^{\infty} x^{n} e^{-x^{3}} d x \\
& =\int_{0}^{\infty} x^{n-2} x^{2} e^{-x^{3}} d x \\
& =\left[-\frac{x^{n-2} e^{-x^{3}}}{3}\right]_{0}^{\infty}+\int_{0}^{\infty} \frac{e^{-x^{3}}}{3}(n-2) x^{n-3} d x \\
& =\left[-\frac{x^{n-2} e^{-x^{3}}}{3}\right]_{0}^{\infty}+\frac{n-2}{3} \int_{0}^{\infty} x^{n-3} e^{-x^{3}} d x \\
& =-\left[\frac{x^{n-2} e^{-x^{3}}}{3}\right]_{0}^{\infty}+\frac{n-2}{3} F_{n-3} .
\end{aligned}
$$

The first term on RHS:
As $x \rightarrow \infty, e^{-x^{3}} \rightarrow 0$ faster than $x^{n-2} \rightarrow \infty$.
Therefore $\left[\frac{x^{n-2} e^{-x^{3}}}{3}\right]_{0}^{\infty} \rightarrow 0$ as $x \rightarrow \infty$.
$\therefore F_{n}=\frac{n-2}{3} F_{n-3}$.
5. Calculate

$$
\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]^{2017}
$$

Solution:

$$
\begin{aligned}
& {\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]^{2}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \cdot\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]} \\
& {\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]^{4}=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right] \cdot\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]}
\end{aligned}
$$

Therefore,

$$
\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]^{2017}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]^{(4)(504)} \cdot\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] .
$$

Page 5
6. Find a polynomial with integer coefficients vanishing at $x=\sqrt{2}+\sqrt{3}$.

Solution:

Let us consider the polynomial $p(x)=x-(\sqrt{2}+\sqrt{3})$. The polynomial $p(x)$ is not a polynomial with integer coefficients. Let us remove the irrationality from $p(x)$. To do this we multiply $p(x)$ by $q(x)=x^{3}+(\sqrt{2}+\sqrt{3}) x^{2}-(5-2 \sqrt{6}) x-(\sqrt{2}-\sqrt{3})$.
Indeed,

$$
f(x)=p(x) \cdot q(x)=x^{4}-10 x^{2}+1
$$

has integer coefficients and

$$
\begin{aligned}
f(\sqrt{2}+\sqrt{3}) & =(\sqrt{2}+\sqrt{3})^{4}-10(\sqrt{2}+\sqrt{3})^{2}+1 \\
& =0
\end{aligned}
$$

The construction of $q(x)$ is as follows. Multiplying $p(x)$ by $q_{1}(x)=$ $x+(\sqrt{2}+\sqrt{3})$ we obtain

$$
\begin{aligned}
p(x) \cdot q_{1}(x) & =x^{2}-(\sqrt{2}+\sqrt{3})^{2} \\
& =\left(x^{2}-5\right)-2 \sqrt{6}
\end{aligned}
$$

Then we multiply $p(x) \cdot q_{1}(x)$ by

$$
q_{2}(x)=\left(x^{2}-5\right)+2 \sqrt{6}
$$

to get

$$
\begin{aligned}
p(x) q_{1}(x) q_{2}(x) & =\left(x^{2}-5\right)^{2}-(2 \sqrt{6})^{2} \\
& =x^{4}-10 x^{2}+25-24 \\
& =x^{4}-10 x^{2}+1
\end{aligned}
$$

Therefore, $q(x)=q_{1}(x) q_{2}(x)$ is the required polynomial to remove the irrationality from $p(x)$.
The answer is $f(x)=x^{4}-10 x^{2}+1$.

